Analyzing User Behavior at PlentyOfFish: Data Science in the Wild

Thomas Levi (@tslevi on Twitter)
Data Scientist at PlentyOfFish
My background

- Started life as a string theorist and cosmologist
 - PhD from UPenn (2006)
 - Postdoc at NYU (2006-2009)
 - Postdoc at UBC (2009-2012)
 - 19 papers and ~600 citations in topics spanning black hole physics, particle physics and Big Bang cosmology

- Currently a Data Scientist at PlentyofFish
My current company: PlentyofFish

- World's largest online dating site: 3.3 million users log in per day, 55 million registered users
- In 10 years grown from a one man operation to ~75 employees
- Web and native apps for iPhone, iPad and Android
- 5 man research team with PhDs (and one BS) in physics, CS, and machine learning
- Work with CUDA clusters, R clusters, ...
Outline of talk

• The data
 • What does the raw data look like?
 • Can we process the data for fast reads for this problem?
• Data wrangling
 • Even processed we can't really learn or analyze
 • How can we summarize the data?
Outline (part 2)

• Data Wrangling (optimizing or welcome to the cluster!)
 • Can we do this in parallel?
 • Building out a distributed cluster for analytics in R
 • doRedis
 • Custom package development

• Feature and data exploration
 • Exploratory CART trees for feature selection
 • Regression techniques
 • CART trees for user insights

• Conclusions and questions
The problem (the data)

- PoF is currently building out its own real time analytics platform
- Part of that is recording user page hits on the site which allows for much deeper analysis than Google analytics
- The raw data is simply stored as a PostgreSQL table like so

<table>
<thead>
<tr>
<th>eventid</th>
<th>userid</th>
<th>eventtime</th>
<th>pagehit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>56</td>
<td>1370555569</td>
<td>inbox.aspx</td>
</tr>
<tr>
<td>1051</td>
<td>23</td>
<td>1370555571</td>
<td>homepage.aspx</td>
</tr>
</tbody>
</table>
The problem (the data)

- Now imagine we want to get entire tracks, grouped by user:
 - `select userid, eventtime, pagehit from raw.data where userid in (56,...) order by userid asc, eventtime asc;`

<table>
<thead>
<tr>
<th>eventid</th>
<th>userid</th>
<th>eventtime</th>
<th>pagehit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>56</td>
<td>1370555569</td>
<td>inbox.aspx</td>
</tr>
<tr>
<td>1051</td>
<td>23</td>
<td>1370555571</td>
<td>homepage.aspx</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2032</td>
<td>56</td>
<td>1370555623</td>
<td>matches.aspx</td>
</tr>
</tbody>
</table>

- This filter is $O(N)$, the sort is $O(m \log m)$ (where m elements are left after the filter)

- This is slow for millions of rows, and we have billions. Is there a faster way?
The solution (data)

- What if we can eliminate the filter... and the sort?
- Let's look at how the data is structured:
 - Right now it's by eventid/time
 - What we want is something indexed and ordered by userid, ideally with as few rows/user as possible
 - What can we do with Postgresql to accomplish this?
The processed table
(with a lot of help from Nisan Haramati)

- Enter: Native arrays in PostgresQL
- We can store the events in a time series array, new events are simply appended as they arrive
- This leaves a table with one array per dimension, per user, and a single row per user

```
select userid, dataarray from array.table where userid in (56,...)
```

- This is $O(1)$ to choose a row, add elements and read the array (no complex filter, no sort because data is stored contiguously and in order on the file system)
Bonuses

- We can slice arrays
- We can get metadata such as length, histogram of array elements...
- Significantly more efficient in memory and storage
- Native set operations
Data Wrangling

● Ok, so we can get data out at a reasonable clip now (later on we'll do even better)

● The data still isn't really in the form we can really play with and start learning on, so what can we do?

● A few options:

 ● We can try and keep the entire path and do some form of graph analysis: the downside to this is that there's a lot of pages and the paths quickly get exponentially complicated. Not a good call for an initial foray

 ● We could try and summarize the data in a nice way and work off the summary/aggregates: This is a good first step
Data Wrangling

- The obvious (to me) is to summarize by counts/page or counts/pagetype.
- We also may want to only look at the first session, first x hours, or break up by idle time periods → write a routine to handle all these and spit out required data only.
- Take into account the distribution of a user session spent on each part of the site (e.g. 13% on their inbox) and total time spent on the site in the period.
- Finally, there's lots of other metadata such as messaging, demographic information etc. contained in a separate MSSQL database. We need to pull this in too.
More data wrangling

• I used R for this (including direct database extraction)

• Packages used:
 • Rpostgresql, RODBC, reshape2, plyr, foreach, sampling...

• My code for a set of users:
 • Opens up connections to SQL and PostgreSQL
 • Pulls metadata and usertracks per user from SQL and the polarized table
 • Finds the first session or x hours
 • Processes and aggregates the data
 • Returns a summarized data frame like

<table>
<thead>
<tr>
<th>userid</th>
<th>inbox</th>
<th>matches</th>
<th>perc_inbox</th>
<th>Messages sent</th>
<th>Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>13</td>
<td>5</td>
<td>0.23</td>
<td>6</td>
<td>456</td>
</tr>
</tbody>
</table>
Parallel Computing (enter the cluster)

- So far, all the computations and even queries we've done are by user, there are no interactions.
- This can be done in an embarrassingly parallel fashion → We can use a cluster.
- There are lots of options in R for parallel computation (see the CRAN taskview on high performance computing).
- We wanted something that satisfied:
 - Easy and generic to write code for many tasks → fast development time and quick iteration.
 - Mature and supported.
 - Fault tolerant.
 - Scales.
 - Nodes can be heterogeneous.
R Cluster

- The packages `foreach` and `iterators` allow for a generic and “simple” programming model → Not much different than writing a loop, except you specify how to iterate (map), process and combine (reduce)
- You can do most anything in the loops you want, even things like database calls
- `foreach` requires a parallel backend to be registered, otherwise it will operate sequentially. There are a lot of options here from utilizing multiple cores on your local machine, SOCK clusters, etc.
- The `foreach` code works with any backend → no rewriting
R Cluster (the parallel backend)

- *rredis* and *doRedis* provide a very good option for a parallel backend
- *doRedis* uses a Redis server as a job queue, it is
 - Fault tolerant
 - Allows for heterogeneous nodes
 - Allows for spawning nodes *during a computation*
Cluster Architecture
(with a lot of help from Nisan Haramati)
Cluster design

- *doRedis* is an excellent package, but we needed some additional functionality on the nodes:
 - DB connectivity functions
 - The ability to spawn nodes, connect to queues and flush memory from bash scripts or from the client side
 - Administrative functionality
 - Integration across multiple servers
 - Code deployment via SVN
- This led to me developing two custom packages (and several scripts and settings files):
 - *databaseConnections* (extends *RODBC* and *RpostgresSQL*)
 - *redisCluster* (extends *rredis* and *doRedis*)
Challenges for *redisCluster*

- Very early on in development, basic functionality
- Features that would be great to add:
 - Ability to spawn nodes remotely from within a client R session
 - Better control and ability to flush memory on queues
 - Redis has a hard limit of 512 MB for strings → `doRedis` can choke with larger sets at times. Would be great to have a way to chunk up the message string to start the jobs and return the data
 - A robust job manager
 - *a la* Hadoop → Ability to store data on nodes so it doesn't have to be passed
Upshot for data wrangling

• We've gone from a large single query on the raw table to many cluster based queries on a polarized, structured table and optimized aggregating/wrangling

• All of these changes reduced the timing exponentially. A rough number is on about 50K users' tracks (~50 million events) we reduced the timing from several hours to roughly 90 seconds!
Other (awesome) things you can do with this

- Rapidly iterate through many machine learning algorithms and parameter spaces (e.g. caret automatically uses foreach) with minimal dev time (literally changing a line or two of code and iterate on large sets quickly), e.g.
 - Neural nets
 - Random forests
 - A variety of boosted models
 - Bayesian models
 - C5.0
 - ...
- Able to process on terabytes of data
- Can rapidly explore and orthogonalize large parameter spaces
 -
(Almost) done wrangling

• We're just about there, except we need to look at outliers

• There are small pockets of users who have either way more/less total and individual page hits over a given time period
 • Plot a histogram or distribution of these things, look for long tails on either end
 • This in fact gives an easy to implement routine in R for excluding them
 1) take attributes you want to eliminate outliers on
 2) Build a histogram
 3) Take any users that are in the very long tails and put them in the outlier set → left with a more normalized population

• This is a bit of an open question, include or not? I chose to do both and performed analysis on the whole set, the normalized population and sometimes just the outliers
(Almost, almost) done wrangling

• Lastly, there are some holes in the data itself when the system was down or not recording properly. We can filter these out in two ways:

 • Look at first eventtime and compare to known creation time (in other DB)
 • Look at density of events overall, and filter around holes
Data Exploration

- Whew! Finally have data we can iterate quickly on and into a reasonable form
- Lots of things we can do with it:
 - Examine various averages and distributions
 - Build classifiers
 - We could go the highly accurate route (e.g. SVMs, neural nets, random forests etc.)
 - At this stage though, we're more interested in *what* are the important events and features our users experience → regression, trees etc., i.e. models that are easily interpretable
CART Trees

- In our case we want to predict whether or not a user will have deleted their profile at some time in the future based on their initial actions.
- Use the trees to explore which features are most important for a given subset of users (e.g. m/f).
- I mostly used `rpart`.
- What splits give the highest information gain?
- What subset of attributes are most predictive?
- Test, prune, feature select, test, prune, feature select,...
Regressions

● We can use the information from the trees to start filtering out variables, which are most important?

● For example, some analysis showed that the more time users spend online in their first day, the more likely they are to become engaged and happy (not exactly earth shattering)

● We can then examine which other attributes are good predictors of that using a linear regression or stepwise routine like LARS
LARS (Least Angle Regression)

- Lars is form of linear regression
- We are trying to predict a result y with the formula
 $$\hat{y} = \beta_0 + \beta_1 x^1 + ...$$
- We do this stepwise, at each step we choose the predictor most correlated with y
- Increase the new β in the direction of its correlation with y.
- Move in equiangular direction until another variable is as correlated
- Continue till all predictors are in the model

- This gives a series of steps that rank attributes in order of importance so we can see what the best predictors are
Results

- This... I can't actually tell you, you'll just have to come work with me if you want to hear about it.
Wrapup

- I (hope) I've shown you what it's like to be a Data Scientist at POF for a couple of weeks
- As you can see, this project involves many steps, calls that have to be made and diverse skillset and tools → That's pretty much being a Data Scientist
- This is one project, some others I've been involved in:
 - Scam detection
 - Bot detection
 - Matching algorithm
 - Lexical processing
 - …
- If you want to chat more: Add me on LinkedIn or Twitter: @tslevi
- Thanks for listening! (now let's go get a beer)