DataScholars

A blog about data science, computer science, machine learning, artificial intelligence, computational social science, data mining, analysis, and visualization.

New: PLOS Text Mining

by reiver

The folks over at PLOS are introducing the PLOS Text Mining Collection.

Text Mining is an interdisciplinary field combining techniques from linguistics, computer science and statistics to build tools that can efficiently retrieve and extract information from digital text. Over the last few decades, there has been increasing interest in text mining research because of the potential commercial and academic benefits this technology might enable.

[...]

First, the rate of growth of the scientific literature has now outstripped the ability of individuals to keep pace with new publications, even in a restricted field of study. Second, text-mining tools have steadily increased in accuracy and sophistication to the point where they are now suitable for widespread application. Finally, the rapid increase in availability of digital text in an Open Access format now permits text-mining tools to be applied more freely than ever before.

[...]

PLOS launches the Text Mining Collection, a compendium of major reviews and recent highlights published in the PLOS family of journals on the topic of text mining. As one of the major publishers of the Open Access scientific literature, it is perhaps no coincidence that research in text mining in PLOS journals is flourishing. As noted above, the widespread application and societal benefits of text mining is most easily achieved under an Open Access model of publishing, where the barriers to obtaining published articles are minimized and the ability to remix and redistribute data extracted from text is explicitly permitted. Furthermore, PLOS is one of the few publishers who is actively promoting text mining research by providing an open Application Programming Interface to mine their journal content.

See it here.

--
submit to reddit
comments powered by Disqus